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ABSTRACT

Strong laws of large numbers for a sequence (xn) of random
functions in D[0,1] are derived using new pointwise conditions
on the first absolute moments, which improve on known results.
In particular, convex tightness is not implied by the hypotheses
of the theorems. It is shown that convex tightness is preserved
when random functions are centered, and this result is applied
to improve some known strong laws for weighted sums in D([0,l].

A weak law of large numbers is proved using a new pointwise con-
dition on the first moments and some weak laws for weighted sums
are improved upon by weakening the hypotheses. A study is made
of relationships among several conditions on (xn) which appear

as hypotheses in laws of large numbers,
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§1. Introduction.

1.1 Laws of large numbers for sequences (xn> of random functions
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in D[0,1] have been obtained using a number of conditions on (xn),
such as convex tightness and conditions on the moments Ellxnllr '
and others ([4],[13],[14],[12)). For random elements in a Banach
spéce E, convexity conditions on E can be assumed, but such con-
ditions are not available in D{0,1l) which is not locally convex

with the Skorokhod topology.

For real-valued random variables the classical formulations

b
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of the strong and weak laws of large numbers are available and
satisfactory formulations of necessary as well as sufficient
conditions have been obtained (([5],[8],[7]). Thus, the major
thrust centers around finding conditions which will convert point-

wise convergence (in some mode) into convergence in the Skorokhod

T P Ao LR AT . e L3 PRI

metric or, which is stronger, uniform convergence.
Necessary and sufficient conditions for pointwise convergence

to imply Skorokhod convergence are known in terms of the moduli

w;(G) and w;(c) which are used in D[0,1] (the notation is that of

[1)). See [11], 2.6.1, p. 277, for additional details. In the
case of random functions in D[0,1], however, more useful conditions
implying Skorokhod convergence are desirable, preferably in terms
of the individual summands. Various integral conditions have been

used ([13],[14),[12]), some of which are listed in §3 and investi-
gated in §6.

1.2 For a seguence (xn) of random variables, tightness is neither
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necessary nor sufficient for the law of large numbers, strong or
weak, to hold. However, the concept of tightness, together with
F { conditions on the moments of the random elements, has proved
natural and useful in providing sufficient conditions for laws
of large numbers, strong and weak, in Banach and Fréchet spaces

(116,1112]).
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In D[0,1], tightness has likewise played a central role,
] : but hitherto this concept has taken the form of convex tightness,
' in which the compact sets involved are also required to be convex

([(13]),[4]). However, it was shown in [3) that any compact convex

e B

set in the Skorokhod topology is also compact and convex in the
uniform topology on D[0,1]). This fact limits the scope of appli- ¢

cability of convex tightness as a condition on a sequence (xn)

T v TSI, TR

of random functions in D[0,1l], since if (xn) is convex tight,
then all random functions xn must necessarily take their values,
with probability one, in a subspace of the Banach space D{0,1l],

which is separable with respect to the uniform topology ([3],§1). !
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In the classical strong law of R. Ranga Rao for identically

Ny

R 3 distributed summands ([9], or [6], p. 254 f£f.) convex tightness

E is not required. 1In §4.1, strong laws of large numbers for non-
identically~distributed random functions which do not require
convex tightness are obtained, using a condition generalizing the
1 basic lemma used by Ranga Rao in the proof of his result. 1In 54.2

previous results of [4) and [13] are strengthened. 1In §5.1 a

new weak law is presented, and in §5.2 are found some improvements

T

4 on weak laws in (13]). Finally, in §6 comparisons of the various

integral conditions on the random functions is presented.




§2. Preliminaries.

2.1 Por the definition of the space D[0,l], as well as for the
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definition and properties of the Skorokhod topology, we refer to

Chapter 3 of [l1]. The Skorokhod metric is denoted throughout

by 4, and || x|| = sup [x(t)|, for x € D[O,1].
Ostsl

2.2 Let (2,F,P) be a probability space and make D[0,1l] into a

measurable space by providing it with the o-algebra generated

by the Borel sets of the Skorokhod topology. A measurable map

X: @ + D[0,1] is called a random element or random function. 1In

particular, X is a random function in D[0,1]) if and only if X(t)
is a random variable for each t ¢ [0,1]. The expectation EX of

a random function X can be defined pointwise by (EX)(t) = E{X(t)}

provided that it turns out that EX ¢ D[0,1]. A sufficient con-
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dition for this is that E ||X]| < o,

2.3 In general, when speaking of a partition P of [0,1]), a finite

set of points (to,tl,...,tm) is meant with

0 = to < tl €...% tm-l < tm = 1; or equivalently, intervals

11'12,.'.'Im'11 = [ti-l,ti’ ’ i-l,...,m“‘l, and Im = [tm-l'tm].

The norm ||P|| of a partition is the length of the longest sub-

interval: |[|P]|| = max {t;,; - t;}. Given § > 0, a partition \
= ,-..,m M

P is said to be S-worse if min {t, - ¢t, _;} > 6. i
g-worse 1~ a1 *

i-llooo'm '.‘

2.4 The indicator function I, of a set AcR, Ac F, is defined by
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¥ I,(w) =0 ifwda ‘
B and
: I =1 ifuwe A,

Also, "a.s." stands for "almost surely" or "with probability one".

L oy A

2.5 For a given partition 0 = to < tl <,..% tm = 1, define the

.

operator T on D[0,1] by ¥
mil ?_\

T x = w(t,) I + x(1)I . .

:

:

If a partition is not specified, then define the operator Tm by

= i
Tux= L ®3) T g,
i=0 2 [—'ﬁ, —ﬂ\.

™ 2

N
<4
]
.—l
R o TR

+ x(l)I{l}.

The operator Tm is a projection of D{0,1l] onto a finite-dimensional
subspace which is additive but not continuous.

2.6 By a Toeplitz matrix we mean an array (ank) of real numbers

satisfying (i) 1lim a, = 0 for each k=1,2,..., and (ii)

n--w

I la,l| s 1, for each n = 1,2,... .
=1

2.7 Two lemmas from [4) are listed.

LEMMA 2.1: If K is a compact subset of D[0,1], then

lim sup d(x,me) = 0,
m+o xeK

LEMMA 2.2: 1If x,y,u,v € D[o,1], then
d(x +u, y+v) s dlx,y) + |lu]l + vl .
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§'5 §3. Conditions on random functions in D[0,1]. I
}4 R Let (xn) be a sequence of random functions in D[0,1]. For
% quick reference various conditions on (xn) are collected in this
‘l bl
i section.
3.1 (xn) is said to be tight if, to every € > 0, there is g
K < D[0,1], compact, such that P[X ¢ K] < €, for every n. H
:
1 3
é 3.2 (Xn) is said to be convex tight if, to every € > 0 there is g
7 K < D[0,1]), compact and convex, such that P[xn ¢ K} < g, for ?
every n. ;
3.3 (xn) is said to satisfy condition (T) if, to every € > 0, %
there is K < D[0,1]), compact, such that E “xnI[xndklu < g, for
1 every n.

3.4 (xn) is said to satisfy condition (CT) if, to every € > 0,
there is K < D[0,1]), compact and convex, such that

E Hxn I(xnéKlll < e, for every n.

3.5 (xn) is said to satisfy condition (MT) if, to every € > 0,

e Ty et [OUERDT I o - b= ot IS RSP

there is a partition P of [0,1] such that
E[ max sup | X_(t) - X (t. .)|] < €,
. i=1,...,m te, " n ri-l

for every n.

3.6 (xn) is said to satisfy condition (mT) if, to every € > 0,

there is a partition P of [0,1] such that

s e =
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max E[l sup | X_(t) - X _(t._,)]|
i=1,...,m tel, n n "i-1

for every n.

3.7 (xn) is said to satisfy condition (RR) if, to every € > 0,

there is a partition P of [0,1] such that

max sup E|X (t) - X (t, ,)]| < ¢,
i=1,...,m teI; ©° nori-1

for every n.

3.8 (xn) is said to be uniformly integrable (UI) if, to every

€ > 0, there is 6§ > 0 such that E ||xn I[xnéB(G)lll < ¢ for every

n, where B(8) = {x: || x| s §}.

3.9 (xn) is said to be stochastically bounded (SB) if, to every

€ > 0, there is 6 > 0 such that Plllxnll > 8] < ¢, for every n.

3.10 (xn) is said to satisfy conditions (M)r' r 20, if (xn)

has uniformly bounded r&h moments, i.e., if there is a constant C

such that Ellanr' < C, for every n. We abbreviate (M) , r > 1,

3.11 For condition (M)l, i.e., for uniformly bounded first moments,

we write simply (M).

3.12 For each condition listed on (xn), the corresponding con-
dition for a single random function X in D[0,1l] is obtained by
taking (xn) to be identically distributed.




§4. Strong Laws of Large Numbers.

4.1 The generalization of the classical strong law to D[0,1l] is
the following theorem which was proved by R. Ranga Rao ([9], or

1 . {6), Chapter 7).

THEOREM 4.1: Let (xn) be a sequence of independent, identi-

cally distributed random functions in D[0,1l]) satisfying

n
E Hx1[| < ©, Then limlil ) X, - EX;|| = 0, with probability one.
n+o  Pk=1

THEOREM 4.2: Let (xn) be a sequence of independent random
w -
functions in D[0,1] satisfying condition (mT) and | k™'E ||X, || "< =
k=1

for some r, 1 £ r < 2. Then

n
lim II% kZl(xk - Exk)ll = 0, with probability one.

n-+w
PROOF: An easy calculation shows that

max E[sup X (t) - EX_(t) - (X (t, ;) = EX (t. .))])
i teIi

< 2 max E[sup |X (&) - X (¢, ;)]
i thi

Tt S S ORI Y

and hence the sequence (Xn) can, without loss of generality, be
assumed to satisfy Exn = 0, for each n.

Let € > 0 be given and choose a partition P of [0,l] such that

n

sup max E(sup |X (t) - X (ti_l)ll < €. (1)
n i=1,...,m thi
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write || = kzl xk||s||3k21(xk - X+l g kZlexkll,

e
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where Tm is defined in §2.5.

Now

1 9 1 %
lim ||K ) T ¥y | = lim max |= ) X(t)| =0,
n ksl n i=0 A 'm-l k=1

a.s., by Chung's strong law of large numbers.

g

1 0 | :
Next, =1 x, -7 %) "
:
1 B E
= max sup |= ]

(X, (£) = X (t, ]
i=l,...,m teI, ™ k=1 k k'ri-1

24 WA

n

1 ;
< max = sup |X, (t) - X, (£, )| :
i=1,...,m " k=1 teI, k kTri-1
1§ i
= max = ) Y, . where
i=1'ooo,m =l

i = - CR— . =
Y t:gp ka(t) X (e, Pl i=1,..0m k=1,2,...
i

Now for each i, (Y; - E(Y;)) is a sequence of independent random

variables with zero means and ElYi - E(Y;)Ir s 4TE kaur .

Thus, the strong law of large numbers yields, for each
i = l'o.o’m'

1 % i i
n D xe1 k k

Tl ¥
Hence, lim]||= [ (x, - T_X )|
n N ka1 k mok

n i i 1 9 i
slm { max £ ] ("B +  omax g I EY

n i=l,...,m k=1 i=l,...)m k
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n
s0+ limE J Elsup [X (&) - X (&, )]

n k=1l teIi
s € by (1), a.s.

The proof is completed by letting € + 0 and excluding a

countable union of null sets. Q.E.D.

REMARK: The conditions of Theorem 4.2, in the case 1l<rs2,

R R L .

do not imply that (xn) is tight. If r = 1, then tightness is
implied.

THEOREM 4.3. Let (xn) be a sequence of independent random
functions in D[0,1) satisfying condition (RR) and the following
condition:

To every € > 0, there is a compact set K ¢ D[0,1] such that

1°, E lIxn I < ¢, for every n,

I
X, ¢K]

2°, Xl n"* E(lnxnllx ¢yl - ElIX, Iy ¢K]II|)’ < =,
n n

for some lsrs<2.

n
Then lim || = ] (X_ - EX)|| = 0, with probability one.
n+® k=1
PROOF: Note that 1° implies that E lix Il < ® , which in turn
implies that Exn exists for each n. Let € > 0 be given and let K

]
be a compact set such that both 1° and 2° hold. Put Xk = X

I
k lxkeKl

and xk = xk I[Xkdxl'

SaXd,
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Since K is compact there is § > 0 such that, for any x ¢ K,

|x(t) - x(8)] < |x(u-0) - x(s8)]| + ¢, (1)

Wwhenever 0 < 8 S t <u<sg + 8. (See [6]), proof of Theorem 8.1,
p. 257).

By (RR) choose a partition P such that

sup max sup E|X_(t) - X (ts D <e, (2
n i l,coo’m tGI .

and, by adding points if necessary, arrange for

lip]l < 6. (3)
Write 2T e - ()] s
" k=1
1 b n " 1 B "
sz xk(t) -En(k(t))|+—k£ = Il +Kk£13“xk” . (4)

Using (1) and (3) we have, for ti_ st < ti' i=1,...,m,
1 2 n '
| & 2 (xk(t) -Exk(t))l < ; Z (xk(t1 i) - EX (e, )]

1 B ' '
+ sup lH kZl(xk(t) = X (t; )]

teIi
12T (ex) o (g )]
+ sup |= (EX, (t) - EX, (t, )
teIi n pas k k' i=1
1 ¥ J
< 'K Zl( (ti 1) - Exk(ti-l))l

k
1 n
+ERZ X, x (£4-0) - X, x(tj)] + ¢

1 n [ ] L}
+ 2 k£1lgx (t,-0) - EX (ti-l)l + ¢, (5)

T
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By the Strong Law of Large Numbers,

n

1 1] ]
lim = (X, (£,) = EX, (t.)) =0 . a.s. (6)
nto B kzl k' i k'"i
for each i = 0,1,...,m.
By (2) 1 ? |EX, (t,-0) - EX (t ) |
Y max = .=0) - ‘L
" iml,...,m P ks K3 i-1

1 n ’ '
< max = J EIX (t.-0) - X, (t, )] < €. (7
i=1,...,m P =1 kK i k'ri=1

1 B ' '
for every n. Now = k£l|xk(ti-0) - X (t, )]

n L ’ ] ]
s % kzlllxk(ti-m - X (e, = Elx(e-0) - X (£, ) l+e,

using (7) and thus, since the random variables are bounded, by

the Strong Law of Large Numbers,

—

1 9.
lim = X, (t,=0)~ X, (t. ;)| < ¢ a.s. (8)
lim 5 1 I%(ty klti) | < e

for each i = 1,...,m.

From (6), (7), (8) and (5), we get

vm L 7 - Ex)| =0 (9)
m - - = '} a.s.
Ao n a1 k k
1 n " "
Now lim = ) ClHx - EIx ) < 26, a.s. (10)
n+o k=1

by the Strong Law of Large Numbers, using hypothesis 2°, Using

(10) and hypothesis 1° we then have

T
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. l n " [, ]
Llim 3 kzltll X M+ Elx D
Tl § it -y + 2§ e pxl
= im = X - X + =
new B =y K k na,oy Ok
< 2¢, a.s. (11)

Using (11) and (9) we get, via (4),
lim
n->oe

| rZ1 I
- (X, - EX,.) < 4¢ a.s.
n o2 k k ’

Taking a sequence (en) of positive numbers converging to 0, we

get, taking a union of null sets,

n
lim || % kfl(xk -Ex )|l =o, a.s. Q.E.D.

n-»oo

REMARK: Condition 2° is somewhat complicated, but it would
seem to render Theorem 4.3 independent of Theorem 4.2. By itself,
1° is of course condition (T), and (T) together with (RR) implies

(mT) (56, Lemma 6.11). Thus, if 2° is replaced by, say,

Zl n Tt Ellxnl[x ¢K]Hr < =, this, for 1<rs2, would imply
n= n

r
] n°fE Han < = and the hypotheses of Theorem 4.3 would imply
n=1

those of Theorem 4.2. If r = 1, Theorem 4.3 may still be independent
o0

1l

of Theorem 4.2 if 2° is replaced by ] n~ | < =

E||x 1
n=1 n

I
X K]

(here 1° follows and need not be stated).

COROLLARY 4.4: Let (xn) be a sequence of independent random




functions in D[0,1] satisfying (RR) and such that there is a
compact set K with P[xnexl = 1, for every n. Then
lim || % % (x, -~ EX,)|]| = 0, with probability one.
n-+e k=1

REMARK: Note that the convex hull of K need not be condi-
tionally compact. In fact, it is shown in §6.4 that (RR) does

not imply convex tightness.

4.2 Denote the topology on D{0,1l] generated by the Skorokhod metric by
Té and that generated by the metric given by the supremm nomm
x|l = 0:31 Ix(t) | by T, Vhen D[0,1] is provided with the supremum norm,
it is a Banach space.

Denote by K the ocollection of all subsets K of D[0,1] which have the
property that their convex hulls co (K) are conditionally compact re Ts.
We shall need the following result from [3].

THEOREM 4.5: If K < D[0,1] then K ¢ K if and only if K is

conditionally compact in Tu‘

LEMMA 4.6: Let (xn) be a sequence of convex tight random
functions in D{0,1]. If E ||xn||”s C < » for all n, and some r > 1,

then the sequence (xn - un), where u = EX , is convex tight.

PROOF: To every m ¢ N there is a (Skorokhod) compact, convex
r

1
TET CET

set K such that P[xndxm] <C , for every n. By

Theorem 4.5, Km is compact re Tu' Hence, coxm is compact re Tu'
and we assume without loss of generality that Km is convex (and

compact) re Tu' and also that 0 ¢ Ky
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Since D[0,1] with the supremum norm is a complete metric
space, Km is totally bounded (no separability is needed here).

Let N(x,e) = {y: || x-y || <€}, x e D[0,1], € > O.

i
Let {N(xi, % )} ™ be a finite cover of Kp-

i=1

Now, ||un - EX_ I[xn‘xm]ll < B ||xn I[xn‘xm]”

1 r-1
r,r xr 1
< (E Hxnll )" (E I[xn‘xm]’ < =, for every n.
Since Km is convex and 0 ¢ Km' E[xn I[xnexm]] € Km' for every n,
i
d hence d(u_, K.) < =, for all write K™ = @ N(x,2 )
an nce v Ky —~ r n. rite i:l im -

By the triangle inequality M, € K(m) for every n. Since this
holds for every m,

U € Ko = n K(m), for every n.

m=1
Since Ko is obviously totally bounded, it is conditionally compact
re Tu(*). The closed convex hull K = ES—TEET is compact re Tu R
and consequently conditionally compact also re Ts'

Now let ¢ > 0 be given and choose Ke' compact and convex re
Ts' such that P[xn € Ke] >1 -¢, ‘for all n. Then
P(X, - u, e K, = K] 2P[X ¢ K andu eK)=P[X eK]>1-c¢,
for all n. Since Ke ¢ K and K ¢ K, Ke - K ¢ K by Theorem 9.8 of

[2). Thus (xn - un) is convex tight, Q.E.D.

It follows from Lemma 4.6 that the conclusion of Theorem 1

,‘ﬂbm"r
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of [4] can be strengthened to almost sure uniform convergence.

We now state this result in its strengthened form.

THEOREM 4.7: If (xn) is a sequence of independent convex

tight random functions in D[0,1) satisfying sup E “xn T < =,

n n
with r > 1, then 1lim || L I (X, - EX,)|| = 0, with probability one.
n,~4 k k
n+ k=1
This result, however, is implied by Theorem 4 of ([13], for

which we now provide an alternate proof. Two preliminary results

are needed.

LEMMA 4.8 ([12], p. 123): Let (xn) be a sequence of real-
valued random variables such that sup Elxnlr < o, for some r > 1.
n

Then there exists a random variable X such that

(i) P[|xn| 2 a) s P[|x] 2 al, for all n and a 2 0;
1

(i) E{lx]“s} <o for 0 < -81- <r-1.
The following theorem is due to Rohatgi [10].

THEOREM 4.9 ([l12]), p. 68): Let (X ) be a sequence of (real-
n
valued) random variables, with EX, = 0 for every n, and let (ank)
be a Toeplitz sequence. 1If maxlankl - O(n-s) for some 8 > 0,
k

and there is a random variable X satisfying

(1) P[Ixnl 2 a)] s P[|x]|]2 a] for all n and a 2 0; and
1
(1) E[X|1*® < =;

then
[ ]
lim J a xXx = 0, with probability one.
n+e ksl O

o me

L.
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THEOREM 4.10:

Let (xn) be a sequence of independent random
functions in D[0,1]

satisfying the following condition:

(CT)r>1: To every € > 0 there is K, compact and

r
convex, such that E “xnI[xn¢K]|| < g,

for every n, where r > 1,

Let {ank} be an array of weights satisfying the additional
condition that

max |a kl = 0(n"%), where 0 < % <r -1,
k=1l,...,n n
Then
? n
lim d4( a_. X a_.EX,) = 0, with probability one.
oo k=1 nk®k’ kzl nk "k ’
PROOF:

Let € > 0 be given and select K, compact and convex
by (C'I‘)r>1 such that

L) r
E Hxn I[XntKlll < ¢, for every n. (1)

Note that this implies the existence of Exn' for each n.

Without
loss of generality K can be taken to be balanced and symmetric

(write Kl = ) a K

and replace K by Kl - Klz cf (2], Theorem 9.8, p.28);
|als1
this in turn implies that K is absolutely convex. This we assume.
] L1}
Write xk = X, I[xkeK]' X = X, I[xkﬂq. We have, using Lemma 2.2:
n n n ' n .
d(kzl a Xy kzl a  EBX.) s d(kz1 a1 Xy o kzl a , Th(X))

n [] n ]
+ d(kz1 a , To(X), kzl a . T (EX))

WL e




n [ n ]
+ d(k£1 a . To(EX), x£1 a , EX,) (2)

n " n "
+ T oag x Il + WY a, EX||
L) 2k % Lo %nk BXg

= (I) + (II) + (III) + (IV) + (V).

n '
Now X ankxk ¢ K, for all n, since K is absolutely convex. Thus,
k=1
using Lemma 2.2,

(I) < sup d(x, Tm(x)) < ¢, for all sufficiently

xeK
large m. (3)
n ' ]
Now (1I) < ||Tm ) ap, (X - EXk)H
k=1
n [ ] [ ]
= max | T 1x (t,) - Ex (£)1],

i=°' ¢ o 'zm-l k=l

using d(x,y) s || x - y|| and the additivity of T, Since K is
compact, the random variables x;(ti) - Ex;(ti) are uniformly

bounded and so an application of Theorem 3.6 yields
n

. ! ' _ .o m_
;12 k£1 a , (X (t,) - EX (t,)) =0, a.s., for each i = 0,1,...,2 -1.

Hence
15 } (X, (£,) - EX, (t,)) = 0
im max a ) - =0,
n+e i=0,1,...,2™-1 k=1 P K1 ko

a.s. (4)

Since K is convex, Exk ¢ K, for all k, and so, just as for (I),

n ] n t
(111) = a(T_( § EX.), EX,) < sup d(x,Tx <e¢, (5)
M kw1l K oby xeK ﬂ

for all sufficiently large m.
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n " "
Now (IV) + (V) s kZl lagel Ul X Il = B lx 1D

n "
+2 1 E|Ix |l . (6)
k=1

k

r

" Ll
Since EI lx Il - E Hx;ll!r s 2'E(|x, ||IT s 2¥ € < =,

for every k, where r > 1, by Lemma 4.8 there is a random variable

X such that (i) P[|xn| 2 al] s P[|x] 2 al, all n, all a 2 0; and

= 1 -
(ii) Elx[1+s < », where 0 < = < r - 1. Since max|a_,| = 0(n ),
s X nk
Theorem 4.9 yields
© L] L]
: lim [ Ja_ [(|]lx || - E||X, ||) = 0, a.s. (7)
; n+o k=1 nk k k
From (1) we have
‘il [ -] "
2 kEllankl E kall < 2e. (8)
using (3), (4), (5), (6), (7) and (8) in (2), we get
n n
iiz d(k£l a X, kgl a, EX) < e+ e+ 2 =de, a.s.

Taking a sequence (en) of positive numbers converging to zero
and taking a union of null sets, we get finally
n n
:iﬂ d(k£l a X, . k£1 a , EX,) = 0, with probability one,
Q.E.D.
That Theorem 4.10 is equivalent to Theorem 4 of [13] is seen

as follows. On the one hand, (C'r)r>1 implies both (CT) and

(M)r>1’ and (CT) implies convex tightness (Lemma 6.8). On the
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other hand, convex tightness and (M)r>l' imply (CT)r>1' Indeed,
let 1 < r' < r. We have
r r r-r'
i r' r\r'r r
E|lx |l len¢K] s [EC|X [I7)7 17 [PIX ¢K]]

r' r-r'
r.,.r r
= (E uxnll ) (P[xn¢xll .

Now EIIanr are uniformly bounded by (M) ,,, and P[X ¢K] can be
made uniformly arbitrarily small by convex tightness and the

choice of K. Thus, to any € > 0 there is K, compact and convex,

]
such that E ||xn Iix ¢K]||r< € for all n, which is condition
n

(CT) _4yq- Q.E.D.

Although the conclusion of Theorem 4.10 is stated in terms
of convergence in the Skorokhod metric, this can be strengthened

to uniform convergence by an application of Lemma 4.6.

§5. Weak Laws of Large Numbers,

5.1 Weak laws of large numbers for random elements in function
spaces (or more general Banach or Fréchet spaces) come in two
types. First, there are those based on sufficient conditions
(usually some type of weak uncorrelation) which imply the con-
vergence in probability of the weighted sums. Second, there are
those which provide conditions sufficient to turn pointwise
convergence in probability into convergence in probability in the
metric of the function space; whereupon necessary and sufficient
conditions for the classical weak laws can be invoked to provide

the pointwise convergence. In this section we present one result
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of the first type, and three of the second type which improve on

existing results (for existing results see [12], [15]).

5.2 The following theorem uses a condition on second moments "
and an uncorrelation condition which looks rather like the condition

(MT) which was used to obtain strong laws in the previous section.

DEFINITION: A sequence (xn) of random functions in D[0,1] 4

is said to be pointwise uncorrelated if

5 oA e AR s e

Cov(x, (t), X, (t)) = E[(X, (t) - EX, (t)(X,(t) - EX,(t))] = 0

for each te[0,1] when k # %.

THEOREM 5.1: Let (xn) be a sequence of mean zero, pointwise

uncorrelated random functions in D[0,1l) satisfying

2
I

1 n
1. lim —5 k£1 E||xn = 0;

n+o n

2 ., To every € > 0 there is a partition P of [0,1]

such that

sup E[ max sup |X
k,L i=1,...,m teIi

()X () = X (e, )X (¢, 1)]] s €.

n
Then 1lim ||l ) kuI = 0, in probability.
S =5 |

H
\
H
:
y

PROOF: Let € > 0 be given, and choose, by 2°%, a partition P

such that §
11 s 5 3
sup E[ max sup |X, (&)X, () - X (t, X (¢, )|] s 5 .
k% i=l,...,m teI, F kori-17TR - 2

PUr e B b W ARl v ke v A B
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n

1
E [ sup (X (&)X (t)
n2e?  0stsl k g_ *

n
L 3 ()X, (£) (t, )X, (t; )]
S -5 E[ max sup (X (B)X, (t) - X (., )X, (¢t
n2€2 i teIi k, =1 xk [} xk 1-1"72 1= l
+ 1 E[max z (b, X (k)] (*) |
22 xk -1

For the second temm in (%)

1 n
~=—= E [max (t. )X, (t;, J)]
22 k,£=l et ¥ (55
17 T X (t,_%,(t, ]
s E[ X, (t. X, (t,
nfe? iZ1  k,f=1 K I-LTTLTTi-1
m n
1l 2 m 2
- =i 7 z E(X (¢, s 5= 1 Elx|
nze2 i=1l k=1 n 82 k=1 k

which can be made less than % for all n 2 no from 1°. For the

first term in (*)

1 n
E[max sup I (X (£)X,(t) ~ X (t, )X, (t,_,))]
nlel i teI, k=1 * ko177 T T-
1
s E [max sup Z (X, (€)X (£) =X, (£, )X, (£, ,))]
a2z T, ko k{Fic1? %

k;‘z
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2
+ —7—— E[max sup Z (x () - x (t, _4))]
i teI; k=1 kori=1

n(n-1)

~5—>—— sup E[max sup | X (£) X, (£) - X, (t )X (t )) 1
n ez k,L i teI k -1 -1

<

Bt SR DA R P I ST T

! 2 ? 2
; + E ||%, |
o ne? k=1 k

4 4

€ 2¢€ 3e
<‘4—+——-

for all n 2 no, Hence, for n 2 n

L, WM, T LK WS

n 3
PL| Zl x Il 2nel <%+ 2=, Q.E.D. ;
k=

5.2 The next result provides sufficient conditions for the

equivalence of pointwise and uniform convergence in probability,

and improves on Theorem 1 of [13].

THEOREM 5.2: Let (x )} be a sequence of random functions in

D[0,1] having property (MT) and such that E Hx || < e, for each n.

Let (a ) be a double array of real numbers satisfying Z |a k|sl

for each n. Then lim Z . (X, (£)

- Exk(t)) = 0, in probabzlzty,
n+o k=1

e P e T T RT O VUL oo oy~ (PPN o

for each t ¢ [0,1], if and only if

n

iiﬂ szl an, (X - Exk)H = 0, in probability.

PROOF: Since (xn) has property (MT), so does (xn - Exn)([14],

proof of Theorem 1). Thus w.l.0.g., we assume EX, = 0, for every n.
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PR AT >

Let n> 0 and € > 0 be given and choose, by (MT), a partition

P such that

)
@
:
tf
é.
t-.

_ sup E[ max sup |X, (t) - xk(ti_l)ll s ﬂ% .
; T n i=l'.oo,m tCIi
n
i Then P Ikzl ankxkll > €]

n n
€ €
< Pl Ilk£1 a (X - T x)ll > 3) + Pl k£1 a, TpXll>31.

n
Now Pl I oa,tx -1 x )l >3] ;
k=1 8
) n ]
S £ E Il £ a (X, - mek)ll ‘
<2 7 Jagl Ellx - T %
€ nk k = ‘m™k

: 2 B
e, =2 ] la,| EI max  sup |X, (t) - X (t. ;)]
{ € k=1 nk i=1,...,m t(Ii k k' i-1

n €
PL|| k£1 a, Tox >3
° e n
= P[i=1T??.'m lkgl ank xk(ti)l > EJ < 3 0

for all sufficiently large n,
n
Thus, to every ¢ > 0 and n > 0, P[|| [ a , X || > el<n,
k=1 P

fo. ali sufficiently large n, Q.E.D.

TRt I
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Theorem 3 of [4], strengthened to yield uniform convergence,

will now be obtained as a corollary.

COROLLARY 5.3: Let (Xn) be a sequence of convex tight random

n
functions in D satisfying (M)r>1' Then lim % ) [xk(t)-Exk(t)] =0,
n-+o k=1

in probability, for each te([0,1], if and only if
1 b
1im||; )) (x, - EX )|l =0, in probability.
n+e k=1
PROOF: We have (M)r>l =2 (UI) and convex tightness and
(Ur) => (MT) (56, Theorem 6.7), and a .= l, k=1,...,n; ax = 0,

n
k > n, satisfies the condition of Theorem 5.2. Q.E.D.

COROLLARY 5.4: Let (xn) be a sequence of random functions

in D[0,1) having property (MT) and such that E “xn|| < =, for each n.

If
1° cov(xk(t), xz(t)) =0 for each k # &, for each t ¢ [0,1]);
and
o D 2
2 kzl var(x, (t)) = o(n®), for each t ¢ [0,1],
then,

n
lim II% kZl(xk - Ex )|l = 0, in probability.

n-—»oo

§6. A Comparison of Various Conditions on Random Functions in D[0,l],

6.1 In this section we investigate relationships among the con-

ditions on a sequence (xn) of random functions in D[0,1], which

were defined and collected together in §3. The most striking result

< Aty




is Theorem 6.7, which asserts the equivalence of convex tightness,
(CT) and (MT) for uniformly integrable sequences. Also, (CT) is

shown to imply convex tightness; (CT) also implies (MT) but uniform

integrability (UI) appears necessary for the converse. Examples

are given to show that many implications cannot be reversed;

however, some open questions remain.

6.2 LEMMA 6.1: If (X ) satisfies (T) then (xn) is stochastically

——

bounded.

PROOF: Let ¢ > 0 be given and let K be compact such that

E ”xn I < €, for each n. Let ¢ = sup ||x|| and let

I
[xn¢K] XeK

§ > max{2,2c}. Then

Pl ||xn || > 81 s p[ ||xl_I I[XneKJ | > &/2] + p[ llxn len‘m I > &/2)
=0+PL|IX TIx_gK) I > 6/2]
2 2
< EE ||xn I[xn‘K] | < 3 €<€, Q.E.D.

LEMMA 6.2: (CT) implies (MT).

PROOF: Let € >0 be given. By (CT) choose K, compact and

€
convex, such that E llxn I[Xntklll < g» for every n.

Since K is compact and convex there is a partition P of

(0,1] and § > 0, using Theorem 3.6 of [3], such that
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sup max sup|x(s) - x(t)]| < % . (*)
xXeK i=1,...,m t,seIi
Then El max sup Ixn(t) - xn(ti_l)l]

i-llooolm tGIi

< E[ max  sup |xn(t) - X

(¢, ]z )
i=l,...,m teIi n i-1 [xn‘K]

+ E[ max sup |X (t) - x (t. .)|I ]
i=1l,...,m teIi n n'ti-1 [xn¢K]
€ .
s E(3) + E[2 llxn I[Xn£K1||] (using (*))
€ , €
< 3 + 3 =€, for every n, Q.E.D.

LEMMA 6.3: Let (xn) be a sequence of random functions in
plo,1]. 1I1f (xn) satisfies (MT) and is stochastically bounded,

then (xn) is convex tight.
PROOF: Given € > 0, find by (MT) a partition P such that

sup E[max sup  |X_(t) - X(ti)|] < €.
n 1 tiSt<ti+l

This implies that

sup P[max sup |xn(t) - xn(ti)|>'ll < % ' (*)

n i tiststi+1

for any a > 0.

Let (ek) and (nk) be sequences of positive numbers such that
an

limn_=0 and [ ¢, = €.
k k
k=1
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Let Gk be chosen by stochastic boundedness so that

sup P[ Hxn I} = §, 1 s €

k'
n

Let B(8) = {x € D[0,1] : ||x|]] 2 6} and define the sets

A (e) = {x e B(§,): max sup |x(t) - x(ti)l s nlt,

i tist<ti+1
where the partition Pk which is used is chosen so that

sup E[max sup X (t) - X (t)]|] s n,_ €
n i t,st<t, n noi k "k’
i i+l
which is possible by (MT).
Then, using (*), we have
sEp PIX ¢ A (e)] < ¢g. (**)
Now put A(e) = n Ak(e). Let n > 0 be given and find ko,
k
such that N < % n.
0
For x ¢ A(e) we have,

max sup |x(t) - x(ti)l S < % N,
1 tiSt<ti+1 0

because x e Ak {e). It follows that
T 0

max sup |x(t) - x(t-0)| < n, and so
i ti<t<ti+l

S (A(e)) = {t ¢ [0,1): sup |x(t) - x(t=0)| > n} is finite
n xeA(€)

el ki
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(at most m o the number of points of the partition P) for each
0

n>o0.

If the set A(e) is conditionally compact, it will follow by
Theorem 6 of [4] that the convex hull co(A(e)) is conditionally
compact.

To prove that A(€) is conditionally compact, we use Theorem
14.3 of [1). The set A(e) is bounded since x ¢ A(e) implies
| x|l s 61. How let & > 0 be given and let k be such that
N S %. Then there is a partition P, by definition of Ak(e).
such that for each x ¢ A, (e) (a fortiori each x € A(e)), we have

max sup |x(t) - x(s)]|< a.
i tist,s<t1+1

If § = min{ti+l - ti} for P, then sup w'(G) < a, and since
i xeA(€)

a > 0 is arbitrary, lim sup w.(G) = 0, so that by Theorem 14.3
8+0 xeA(e)
of [1), A(e) is conditionally compact in D[O,l].
Thus, co(A(e)) is conditionally compact in D[0,1]. Now,

PIX ¢ co(A(e))) < PIX ¢ Ale)] = PIX e v A:(e)] slg P[xneAﬁ(e)l

=] PIX ¢A ()] s ] supPIX ¢A(e)) <] e =g, by (**).
k k n

Since ¢ was arbitrary, (xn) is convex tight, Q.E.D.

LEMMA 6.4: If (xn) is convex tight and uniformly integrable,

then (xn) satisfies (CT).

PROOF: Given € > 0, find by uniform integrability § such that
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Ellxn I[xﬂtB(G)]“ < ¢, for each n.
By convex tightness, find K, compact and convex, such that

P[XntKl < %. for every n.

Then
Eflx 1 I =Elix 1 . i
n [xn¢K] n [xngx, xntB(G)l
*ENX, Irg ok; x e (SN I
n"? % €
<e+d6EI ]
[xngx, xnea(a)]
se+ S§E1I
[xnéxl
= ¢ + § p[xngx] < e +e= 2.
Thus (xn) satisfies (CT). Q.E.D.

However, by Example 6.3 below, uniform integrability cannot

be replaced by stochastic boundedness in Lemma 6.4,

LEMMA 6.5: 1If (xn) is tight and uniformly integrable, then
(xn) satisfies (T).

PROOF: Exactly the same as that of Lemma 6.4,
LEMMA 6.6: Uniform integrability implies stochastic boundedness.

PROOF: Let B(8) = {x: || x|| s 68} Let ¢ > 0 be given and

choose, by (UI), 8 such that E llxn I[xntn(6)1|| < ¢, for each n.

T e W RS RN N B
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Then, for § 2 1, for every n,

PLIX,N 2 8 = RUIX, Ty ype)yll 2 6 )

1 :

ST ELIX, Try gn(on il ] '

:

]

< E ||xn lenda(s)]” s €, Q.E.D. 5

¢

¢

THEOREM 6.7: 1If (xn) is uniformly integrable, then the ?
following are equivalent: §
1° (Xn) is convex tight; }

2° (x ) satisfies (CT); ;

3" (x_) satisfies (MT).

:

PROOF: 1° => 2° follows from Lemma 6.4; 2° = 3° from E
Lemma 6.2; 3° == 1° from Lemma 6.6 and Lemma 6.3. Q.E.D. g

LEMMA 6.8: If (xn) satisfies (CT) then (xn) is convex tight.

PROOF: Lemma 6.1 yields: (CT) implies stochastic boundedness.

oy S e

Now Lemma 6.2 and Lemma 6.3 yield the result, Q.E.D

6.3 Easy examples show that (MT) does not imply tightness nor

does tightness imply (MT).

We write (UI) for uniform integrability and (SB) for stochastic

boundedness.

EXAMPLE 6.1: (UI) does not imply tightness. The counter-

example is the sequence (xn) of deterministic random functions

X =1
n [2‘“‘1, 2

-n" n=1,2,etc.

PP OT CTOSP R




Thus, by Lemma 6.6, (SB) does not imply tightness either.

EXAMPLE 6.2: (SB) = (UI)., Let (Xn) be the sequence of

random functions defined by

-

n, with probability '

X, (t) = % 1
0, with probability 1-,;' for 0stsl.

EXAMPLE 6.3: Convex tightness and (SB) do not imply (MT).

Let X = X for every n, where X is defined as follows. Let

n
x = 220 ¢ L 3 +m=23...,% =4I, . Let

[‘—n: 2n-l) ir 1]

-n

PIX = xn] =2, n=1,2,etc. Then X is convex tight and stochas-

tically bounded. But for any partition P of [0,1],

E{ max sup [X(t) - x(t; )|} 2 El_ sup [X(t) - x(0){]

i’l"-.’m t(li ost<t1
v 2
=E[ sup [X(t)|) = } 27" 2" a4 =
05t<t1 n-no
-n°+1
where n, is such that 2 < t,. Thus (MT) fails, Q.E.D.

Thus, by Lemma 6.2, convex tightness and (SB) do not imply (CT).

6.4 We have (CT) ==> (MT) ==> (mT) ==> (RR). The first impli-

cation follows from Lemma 6.2 and the last two are obvious.

EXAMPLE 6.4: (mT) =& (MT). Define a random function X as

follows. Let @ = [0,1] with Lebesgue measure. Let X(w) = I[w 1]
9

Let € > 0 be given and choose a partition P of {0,1] such that
}) < e. Then

max (ti -t
1-1,...,31

i-1




E[ sup |X(t) - x(ti_l)ll =t -ty <€,
teIi

for each i, so that (mT) is satisfied. However,
E[ max sup |X(t) - x(ti_l)ll =1,
i=1l,...,m tel,
i
for any partition P, so that (MT) fails. Q.E.D.
Since tightness implies (SB), by Lemma 6.3, (MT) and tight-
ness imply convex tightness. That (mT) and tightness do not imply

convex tightness is shown by Example 6.4.

EXAMPLE 6.5: (T) £ (MT). Let X be the random function

of Example 6.4. (MT) fails. Let

K = (x

- . € - &
e = I[w,l]' 0 < Swsl 5 < 1}

2

where 0 < € < 1. Then Ke is conditionally compact in D, and

=& 4 £ i i i isfi
E ||X I[xlell =3+ 5 =¢€. Since ¢ is arbitrary, (T) is satisfied.
Q.E.D.
Clearly, also (MT) = (T), so that no implication holds

between the two conditions.

LEMMA 6.9: For a random function X in D with E [|X]| <= ,

condition (mT) is satisfied.

PROOF: For 0sa< B <1, let p(a,B) =E[ sup [X(t) - X(s)]|].
ast,s<B

Let 1, = 1 if 0(0,1) < €; otherwise, let T, = inf{t: p(0,t) > ¢}.

Since 1lim p(O,%) = lim E[ sup 1 |x(t) - x(s8)])
n->o n+o 058,t<"-‘
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= E[lim sup ; [X(t) - X(s)|] = O,
n-+o Ost,s<H

by the dominated convergence theorem, using E ||X|| < =, we have
T, > 0.

In general, let Tj =1 if p(rj_l,l) s €, and let

Tj = inf{t: t > Tj-l and p(rj_l,t) > € }, otherwise . Again

Tj < Tj+1.

Now suppose that Tj <1, for every j =1,2,... . Since

(tn) is monotonically increasing it converges to some t5 e(0,1],

and since X € D,

I B SRR At

lim sup [X(s) - x(t)]
n»m. tnst,s<1n+l

|X(ty) - X(tg)| = 0.

—

Thus, € < lim E{ sup |x(t) - x(s)]]
n-+o tnst,s<rn+l

0, a contradiction.

This proves the lemma. Q.E.D.

EXAMPLE 6.6: (RR) and (M) #> tightness. Let

R T e 11T AT IOTY S AP WP

- . n-1
xln = I Zi-l, 21 ’ 1l = 1,2,..0’2 - 1
(== =)
2 2
x = I
n
2" 1,n 12 ;l, 1]
2
Define the random function X, by
1 n-1
P[xn = Xin] = —m ’ fOI‘ 1 = 1’2"..'2 .

2

We show that (mT) is satisfied. Let P be a partition and

Pewiae- 245
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let ||P]| be its norm.

Given an interval [ti-l'ti] of P, for fixed n there can be
at most [2n [P ||]] + 1 values of j such that the interval where
xjn is = 1 has a non-empty intersection with [ti—l,ti]' ([-] is

the greatest integer function). Thus,

Plo:  sup [X_(6) - X (¢, )] = 1} < (2" [[pl ) + D=
t. .st<t, 2
i-1 i
s 2" lpll + iz = (o)l + 32, and so
2 2

E[ suwp Ixn(t) -x (e )] =P{ swp X (t) - xn(ti_l)l = 1}
t,_pstet; t; _1Stety

n-1

< || Pl + l; , and this holds for each i = 1,...,2 -
2

Let € > 0 be given. Choose ||P|] < % and n) such that

|l—'

€
< 7 . Then

n

N
o

sup max E[ sup |X () - X (t; ,)|) < €.
n=n°,n0+1,“. i ti_lst<ti

Now refine P so that this holds for n=l,...,no-1. Also
sup max E[ sup X _(t) - X _(t. )]} s €.
n i ti-15t<ti n n "i-1l

But this is (mT).

But the sequence (xn) is obviously not tight; this can be
seen by Theorem 15.2 of Billingsley; in fact

e - i - .

i st 0 i i

R PRI AT D
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lim P[w;(G) > €]l =1,
n+o n

if 0 < € <1, for any § > 0.

et

Since (xn) satisfies (mT) but is not tight, it satisfies
(RR) and is not tight. (M) holds since every X is bounded by one.

Q.E.D.

LEMMA 6.10: 1If (xn) satisfies (RR) and (T), then it

satisfies (mT).

PROOF: Let € > 0 be given, and by (T), choose K, compact,
such that lE:llxnI[x ¢K]|| < €, for all n, and let P be a partition of
n
{0,1] such that (RR) holds. Choose § > 0 such that

0 ssst<n<s+ 4§ =<1 implies
|x(t) - x(s)| s |x(u-0) - x(s)| + €, for all x e K.

By adding points to P if necessary, arrange for max {t, -¢t, .} <86,

i=1,,..,m * 17
[ ] "
Write Xn = xnI[anK] and xn = xnI[xntK]' Then,
max E[ sup Ixn(t) - xn(ti-l)ll

i=1’o-n'm t‘Ii

] ]
3 max E[ sup |X (t) - x (t, )]
i=l,...,m ter, " noi-l

+ max E[ sup Ix"(t) - x"(t )|}
i=l'.c-'m tGIi n n i

[ ] ”
. s max Ellxn(ti-O) - xn(ti_l)ll + e+ 2E Hxnn
i-l, LN ) ’m

H
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:
|
' ;
< max sup E[|X (£) = X (t, ,)|) + €+ 2 »
i=l,...m tel, O "1
< e+ €+ 2 = 4e, and thus (mT) is satisfied. Q.E.D.
6.4 We have the following diagram: L
-
(M) 5, = (uI) =>(SB) |
J T
-; (M) &= (T) <= (CT) == (MT) == (mT) => (RR) ;
2 a
convex g
tight
Figure 1. §
6.5 Some Open Questions
1° Does (RR) imply (n®) ?
2°  Does (RR) together with (M) imply (nf) ?
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